

This image was taken by NASA's Solar Dynamics Observatory on July 6, 2012 and shows a brilliant X-ray solar flare erupting from the sun.

Solar flares are not all the same. Some produce less energy than others, and so astronomers classify them by their X-ray energy using four different letters: B, C, M and X. C-class flares produce 10 times more X-ray energy than B-class flares. M-class flares produce 10 times more energy than C-class flares, and X-class flares produce 10 times more energy than M-class flares. One B-class flare can produce more energy than 240,000 million tons of TNT!

The table below lists all of the M and X-class flares detected between January 1, 2013 and August 15, 2013 at a time when solar activity was near its maximum. This period of time spans the first 227 days of 2013. Also during this time, there were about 690 C-class flares and 440 B-class flares. All of these flares were seen on the side of the sun facing Earth, which represents $\frac{1}{2}$ of the total surface area of the sun.

Day	Flare	Day	Flare	Day	Flare
1-5	M	5-2	M	5-20	M
1-11	M, M	5-3	M, M	5-22	M
1-13	M, M	5-5	M	5-31	M
2-17	M	5-10	M	6-5	M
3-5	M	5-12	M, M	6-7	M
3-15	M	5-13	X, M, X	6-21	M
3-21	M	5-14	Χ	6-23	M
4-5	M	5-15	Χ	7-3	M
4-11	M	5-16	M	8-12	M
4-22	M	5-17	M		

Problem 1 - What were the total number of M and X-class flares during this period of time?

Problem 2 – What were the total number of B, C, M and X-class flares detected during this period?

Problem 3 – What percentage of all flares were B, C, M and X?

Problem 4 – What was the average number of B and C-class flares seen each day?

Problem 5 – An astronaut wants to do a spacewalk on a particular day during this period. What are the odds that she will see an M or X-class flare?

The flare data was obtained from

http://www.swpc.noaa.gov/ftpmenu/warehouse/2013/2013_events.html

Problem 1 - What were the total number of M and X-class flares during this period of time?

Answer: By counting Ms in the table, there were 31 M-class and 4 X-class flares.

Problem 2 – What were the total number of B, C, M and X-class flares detected during this period?

Answer: 690 + 440 + 31 + 4 = 1165 flares.

Problem 3 – What percentage of all flares were B, C, M and X?

Answer: B = 100% x (440/1165) = 38%

C = 100% x (690/1165) = 59% M = 100% x (31/1165) = 3% X = 100% x (4/1165) = 0.3 %

Problem 4 – What was the average number of B and C-class flares seen each day?

Answer: B: 440 flares/227 days = about 2 flares

C: 690 flares/227 days = about 3 flares

Problem 5 – An astronaut wants to do a spacewalk on a particular day during this period. What is the probability that she will see each an M or X-class flare?

Answer: There are 227 days in the sample and 35 M or X-class flares were seen, so the probability is 35/227 = 0.15 which is also stated as 15%. The low probability means that it is not likely that on a random day the astronaut will see anything. In order to have a 50/50 chance, she would have to observe for at least 4 days (4x0.15 = 0.60 which is greater than 0.50 or 50%).